Bremner, T.A., W.L. Douglas and G.O. Ogonji. Howard University, Washington, D.C. Substrate-specific differences of alcohol and octanol dehydrogenases in eight species of Drosophilidae.

Of the ten cathodally migrating isozymes of alcohol dehydrogenase (ADH) detected by Ursprung and Leone (1965) in D. melanogaster, the slowest three showed stronger formazan staining with n-octanol than with ethanol. These three bands were shown, on the basis of linkage relation-

ships, substrate specificity, and differential elution from DEAE cellulose columns. to belong to a separate enzyme system, octanol dehydrogenase (ODH) which shows strong formazan staining with n-hexanol, n-heptanol, and n-octanol (Courtright, et al., 1966). Isopropanol and sec-butanol are equally good substrates or better than ethanol for ADH in D. melanogaster (Johnson and Denniston, 1964; Grell et al., 1965).

In an attempt to differentiate these two enzyme systems further and to ascertain whether there might be species-related differences in substrate specificity within each system, a comparison of the substrate requirements of both ADH and ODH in eight members of the family Drosophilidae was undertaken. The eight species belong to two genera, Drosophila and Zaprionus. Of the seven Drosophila species four, robusta, camargoi, metzii, and unipunctata belong to the subgenus Drosophila, while D. lebanonensis casteeli belongs to the subgenus Pholadoris (primitive), D. busckii to the subgenus Dorsiphola, and D. melanogaster to the subgenus Sophophora. The single Zaprionus species is Z. multistriata.

The substrates fall into four categories, primary unbranched alcohols, secondary alcohols, branched primary alcohols, and a cyclic alcohol, cyclohexanol. The method of agar gel electrophoresis and formazan staining of Ursprung and Leone (1965) as modified by Pipkin (1968) was used to assay crude homogenates of single female flies cultured on an enriched medium, and aged according to the following schema: D. busckii, 4-6 days; D. melanogaster, 5-6 days; D. metzii, 5-8 days; D. unipunctata, 7-9 days; D. camargoi, D. robusta, D. l. casteeli, and Z. multistriata, 9-11 days. These were the ages at which the respective species attained their optimum levels of enzyme activity as measured by the intensity of formazan staining. To compensate for the very small size of D. busckii 2-4 females were homogenized in a drop of distilled water.

From Tables I-IV it can be seen that both the ADH and ODH of D. unipunctata show more intense staining when secondary alcohols are used as substrates. The ADH of D. busckii is aberrant in that it shows a preference for the short chain unbranched primary alcohols while its ODH activity is quite low. Both ADH and ODH show a moderate preference for the long chain, unbranched primary alcohols in five of the species assayed. Although the two enzymes have overlapping substrate specificities, that of ODH is distinctly narrower and comprises

Table I Unbranched Primary Alcohols

	Enzyme								
Substrate	Activity	mel.	metz.	busc.	rob.	uni.	car.	Dlc.	Z.mult.
Methanol	ODH	-	*	-	-	-	がつか	-	*
	ADH	かかか	-	***	うとうとうと	**	***	***	かかか
Ethanol	ODH	-	-	-	-	-	オペン	-	*
	ADH	がつと	-	*	ががが	*	さささささ	***	***
N-propanol	ODH	**	-	-	*	オオオ	**	**	**
	ADH	かかか	~	かかか	***	*	***	***	***
N-butanol	ODH	*	*	, 	**	***	かか	さささ	*
	ADH	ポポポ	-	*	うとうとうと	*	かかか	***	オオオ
N-amy1	ODH	**	**	水	*	-	かわかか	** **	***
•	ADH	****	-	**	***	*	うとうとうと	かかか	**
N-hexanol	ODH	**	***	**	がが	-		***	***
	ADH	がつかか	-	**	אראר	*		オオオ	አ ተአተ
N-heptanol	ODH	がわけ	ricick	*	***	***	うとうとうと	***	***
•	ADH ·	***	-	*	***	*	***	かかか	***
N-octanol	ODH	***	***	**	**	-	***	おおお	***
	ADH	***	-	-	300k	*	**	***	かかか
Nonyl alc.	ODH	*	*	*	がが	が	かか	さささっと	ががが
•	ADH	richerie	-	*	っとっとっと	*	***	かかか	オオオオ
Decyl alc.	ODH	*	*	*	-	-	**	20%	**
	_ADH	***	-	*	****	*	***	***	**

Table II Secondary Alcohols

	Enzyme						V		September 1981 A
Substrate	Activity	mel.	metz.	busc.	rob.	uni.	car.	Dlc.	Z.mult.
2-butanol	ODH	-	*	*	*	**	**	- : , .	*cicic
	ADḤ	***	. . .	*	**	**	***	***	***
2-hexanol	ODH	-	-	-	-	***	*	-	***
	ADH	かかか	が	אראר	richt	*	かかか	かかか	****
4-heptanol	ODH	-	- .,			***	ったたた	-	t 🕳 ta de 🗀 de
	ADH.	איז'רז'ר	- , ,	· *	*הלהליג	がが	*****	*	ok:
2-octanol	ODH .			*	***	さつとっと	かいかい	かかか	***
	ADH	***	<u> </u>	*	*	3°C3°C .	***	******	オオ

Table III Branched Primary Alcohols

	Enzyme								
Substrate	Activity	mel.	metz.	busc.	rob.	uni.	car.	Dlc.	Z.mult.
Iso-propanol	ODH	-	*	-	*	-	-	-	-
	ADH	***	*	20	かかか	かか	***	かかか	dedede
Iso-butanol	ODH	*	*	· _	かかか	が	さくさくさく	がか	かか
• , •	ADH	מימים ו	*	*	**	オオオ	*	さいさい	がかかか
Iso-amy1	ODH	34	さけて	*	*	がが	*	**	**
alcohol	ADH	***	_	*	*	かか	**	**	**
Tert-butanol	ODH	*	_	*	1 <u>2</u> 1 1 1	_	***	_	
	ADH	**	*	-	***	*	***	かかか	ricric
Tert-amyl	ODH	'x'c	-	_	*	·-		*	* /
alcohol	ADH	***	-	זרורו <i>ר</i>	*	ז'רז'רז'ר	*	***	**

Table IV Cyclic Alcohol

	Enzyme				100	:							3	. :	
Substrate	Activity	mel.	, n	netz.	busc.		rob.	un	i	car.	.]	Dle.	Z.	mult.	
Cyclohexanol	ODH	*	-		-		*	זירזיר		*		_	*	;	-
•	ADH	***	-		**		オオオ	*		***	7	*	×		

Legend, Tables I - IV.

Species: mel. = D. melanogaster; metz. = D. metzii; busc. = D. busckii;

rob. = D. robusta; uni. = D. unipunctata; car. = D. camargoi;

Dlc. = D. 1. casteeli; Z. mult. = Z. multistriata.

Intensity of formazan staining:

*** = strong; ** = moderate; * = trace; - = negative

primarily the 5 to 8-carbon alcohols, with n-heptanol giving the highest intensity of staining. The ADH of D. unipunctata shows no staining with n-hexanol, but moderate staining with cyclohexanol; its ADH uses all the substrates tested. The ADH of D. metzii does not use any of the unbranched primary alcohols, while that of D. melanogaster uses all of them.

The above findings suggest that the same enzyme in different species shows small but significant differences in substrate specificity which may be related to minor evolutionary differences in the structure of the molecule resulting in different stereochemical requirements for enzyme activity.

This work was supported by National Science Foundation Grant GB 8779, and NIH Grant 1 R 101 GM 18409-01.

References: Courtright et al, 1966, Genetics 54:1251-1260; Grell et al, 1965, Science 149:80-82; Johnson and Denniston, 1964, Nature 204:906-907; Pipkin, 1968, Genetics 60: 81-82; Ursprung and Leone, 1965, J. Exptl. Zool. 160:147-154.